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Flow between torsionally oscillating disks 

By S. ROSENBLAT 
Department of Mathematics, King's College, London 

(Received 4 November 1959) 

Two parallel infinite plane disks, between which is contained a viscous fluid, 
oscillate torsionally about a common axis. Of specific interest are the cases 
where (i) one disk only is in motion, and (ii) the disks oscillate 180" out of phase, 
but with the same frequency and amplitude. The basic parameter is found to be 
the Reynolds number derived from the frequency, the kinematic viscosity and 
the disk separation. Solutions of the Navier-Stokes equations for both small and 
large Reynolds numbers are developed and the transverse and radial-axial flows 
investigated. 

1. Introduction 
In  a recent paper (Rosenblat 1959) the author examined the flows resulting 

from the small torsional oscillations of an infinite disk in a viscous fluid otherwise 
unbounded and at rest. It was found that linearizing expansions depending on 
the smallness of the oscillation amplitude were insufficient to describe one of the 
velocity components, namely, the mean steady radial-axial component. This was 
essentially because the method does not allow for the fact that non-linear inertia 
terms predominate outside a thin boundary layer, though they are negligible 
within it. 

As a sequel, the present paper investigates the analogous problem in which the 
fluid is now bounded by a second, parallel disk at  a given distance. Two cases only 
are studied: (i) when one disk performs small torsional oscillations and the other 
is at  rest; and (ii) when both disks oscillate with the same amplitude and fre- 
quency, though with a phase difference of 180". 

Commencing with the Navier-Stokes equations, we seek solutions on the 
assumption that certain non-linear inertia terms may be omitted. It is found that, 
unlike in the above-mentioned problem, such solutions are in fact obtainable 
with all boundary conditions satisfied. Moreover, it is subsequently shown that 
the approximate method is valid provided a single condition relating the ampli- 
tude of the oscillation with the Reynolds number of the flow holds. 

Although exact solutions can be developed throughout they prove cumbersome, 
and approximations for low and high Reynolds number are more convenient. The 
former apply for R < loin case (i) and R < 40 in case (ii); the latter for R > 20 and 
R > 80, respectively. 

Transverse velocities are first calculated and are seen to have a boundary-layer 
character at  large R. The rotational motion of the disks gives rise to centrifugal 
forces which in turn cause the fluid to be thrown radially outwards. Hence 
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a radial-axial flow is set up which has a mean steady component as well as a fluc- 
tuating component. The behaviour of the steady term is of particular interest and 
is fully discussed. 

In  order to balance the fluid expelled by centrifugal action a radial inflow 
between the disks is required. Hence a radial pressure gradient is induced which 
maintains this flow. It is found from the equations of motion to act inwards and 
to be constant. At high Reynolds numbers it is the dominant factor outside the 
boundary layers so that the flow there has a Poiseuille-type profile. 

The case of large amplitude oscillations is not considered here. In  the limit as 
the amplitude becomes infinite the problem becomes that studied by Batchelor 
(1951) and Stewartson (1953), where two parallel disks rotate steadily about 
a common axis. Some formal comparison of results may therefore be made. 

2. One disk oscillating 
Consider a body of fluid bounded by two parallel disks which are represented 

by the planes z = 0 and z = d in a cylindrical polar co-ordinate system. The axis 
r = 0, perpendicular to the disks, is the axis about which they may perform 
torsional oscillations. If u, v and w be respectively the radial, transverse and axial 
velocity components, p the pressure, p the density and v the kinematic viscosity, 
then the Navier-Stokes equations of motion are 

(1) 

( 2 )  

(3) 

while the equation of continuity is 

-- i a  (ru)+- aw = 0. 
r ar ax (4) 

We take the &sk z = 0 to perform torsional oscillations of frequency n and 
angular speed Q, while the disk z = d remains at  
are then u = w =  0, v=r f i e i& on 

u = v = w = O  on z = d .  

Equations (1)-(5) can be satisfied by writing 

rest. The boundary conditions 

} 
z = 0, 

(5) 

p / p  = Q2d2P(y,  7 )  + 4Q2r2K(7), y = z/d, 7 = nt. 

That is, we seek a solution in which the radial and transverse velocities are linear 
functions of r .  The equations of motion then establish the required form of the 
pressure, with P ( y ,  7 )  and K(7) unknown functions of the variables indicated. 
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On substitution from (6), equations (1) and (2) become 

1 iYF 
- 2 F g] - (g eir)2 = - K ( T )  + - __ as + (g) [ (g) R ay3 

and 

where R = nd2lv 

is the Reynolds number of the flow. The boundary conditions ( 5 )  become 

ig+2 ( ; ) ' [ g g - F $ ]  = RP,  1 d2g 

i 
aF 
a Y  
aF 
a Y  

P = - - 0 ,  g = l  on y = O  

F = - = g = O  on y = l .  

Equation (3) reduces to 

and serves merely to determine the axial pressure gradient. 

Transverse component 
On the assumption that the amplitude of the oscillations, i.e. Szln, is small, it 
appears permissible to neglect to first-order the non-linear convection terms in (7), 
(8) and (ll),  though retaining the non-linear centrifugal term (gei7)2. (Some 
remarks concerning the validity of this assumption will be made later.) For the 
transverse flow we then have to solve 

with g(0) = 1 and g( 1) = 0. The solution is 

sinh J(iR) (1 - y) 
= sinhjfiR) * 

Equation (12) leads to, in real notation, 

[COSJ(+R)YCOS~J(+R) (2- y)-cosJ(+R) (2- y) coshJ(4R) y] cosnt 
V - ra-  cosh,/(2R) -cosJ(2R) 

Expanding this for small values of the Reynolds number, we get 

+[sinJ(+R) ysinhJ(+R) (2-y)-sinJ(+R) (2-y)sinhJ(+R) ylsinnt 

(13) 

with amplitude approximately 
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and phase angle 

For large R, (1  3) becomes 
tan-l QRy(2 - y ) .  

the well-known shear-layer solution, whose magnitude is 

391 

(16) 

Numerical evaluation of I w 1 / r  Q from ( 13) , ( 15) and ( 18) for various values of R 
indicates that the approximation (15) is valid for R < 10, and the asymptotic 
form (18) for R > 20. Curves illustrating jvl/rQ for R = 5,50 and 200 are given in 
figure 1, the first derived from (15)) the two latter from (18). 

05 i\ R=O 

L 
R = 50 

R=2W 

\ 

0 025 0 5  07 5 1.0 

I 4 h R  

FIGURE 1. One disk oecillating: amplitude of tramverse velocity \ul/ra for R = 5, 50, 200. 

We see that for small Reynolds numbers the fluid has transverse motion for all 
0 < y < 1. In the limit R -+ 0, the velocity profile is linear in y (the broken line in 
figure 1) with zero-phase angle. For non-zero R, the profile assumes the form of 
a polynomial in y, and the fluid acquires a phase lag with respect to the oscilla- 
tions of the plate. The curve R = 5 shows that lv ) / r Q  decreases with increasing R; 
at the same time this decrease is less for small y than for large y.  That is, there is 
already a trend towards concentration of the moving fluid near the oscillating 
plate. 

At about R = 50, a boundary layer adjacent to the rotating disk becomes 
apparent, and its thickness has order of magnitude 

Thus for large R the presence of the stationary disk has no effect on the transverse 
motion whose velocity profile is exactly that in the ca8e of a single disk in an 
otherwise unbounded fluid. 
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From equation (14), the skin friction for small R on the disk z = 0 is 

,u (E) z -YE d [ (1 + 2) cosnt - 
z=o 

and on the disk z = d is 

lU - N -~*[(1-~)cosnt+-sinnt  d " 1  6 . 

When R -+ 0, the shearing forces are equal on the two disks. As R increases, the 
shear on the rotating disk increases in magnitude, while that on the stationary 
disk decreases. 

Similarly for large R, from equation (17) 

and 

Steady radial-axial component 
Reverting to equation ( 7 ) ,  we see that the radial-axial flow will be given by 

(23 )  

provided the non-linear convective terms can again be neglected. From (12) we 
obtain 

( 2 5 )  
1 Gosh hy1- cos hy, 1 cash ( 1 + i) - 1 e2iT 

(geiT)2=2[ coshh-cosh I+-[ 2 cosh(l+i)h-1 ] ' 
where h = 4(2R), y, = 1-y. 

This suggests that there are solutions of the form 

and 

Substitution of (25) - (27)  into ( 2 4 )  yields 

and 

(28)  

The boundary conditions are 

( 30) 
f = f ' = O  on y = O  and y =  1, 

h = h ' = O  on y = O  and y = l .  

The above equations indicate that the radial-axial flow has a mean steady 
component and a fluctuating component of frequency twice that of the oscillating 
plate. The radial pressure gradient is similarly compounded of two such terms. 
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The solution of (28)  for the mean steady component is found to be 

1 1 
(sinh hy, +sin hy,) - - (sinh h +sin A)  ( 1  - 3y2 + 2y3) 

1 
= (cosh h - cos A)  [a 4h 

+ $(coshh + cosh) y(1- 2y+ y2) - +y2(l - y)] , (31) 

3 
2h 

- $(cash hy, + cos hy,) + - (sinh h + sin A)  y( 1 - y) f'(y) = (coshh - cos A) 
1 

+ i(cosh h + cosh) (1 - 4y + 3y2) - J y ( 2  - 3y)] (32) 

(33) 
3 2h+h(coshh+cosh) -2(sinhh+sinh) 

K -- 
with T 3 [  cosh h - cos h 

With h and y, replaced by ,/(2R) and 1 - y, these expressions reduce to, for small 
Reynolds numbers, 

(34) 

(35) 

and K O  z &+O(R2).  (36) 

R f = T o Y " l  - Y Y  (3 -Y)  +O(R3), 

R f = =by( 1 - y) (6 - 15y + 5y2) + O(R3)  

For large R the corresponding approximations are 

These solutions are illustrated in figures 2 and 3. Figure 2 depicts schematically 
a typical streamline of the radial-axial steady flow at each of the selected Rey- 
nolds numbers R = 5, 50, 200; figure 3 shows the dimensionless radial velocity 
f = nu/r!2. When R = 5 ,  f = 0 at y = 0.47 and the curves for y < 0.47 and 
y > 0.47 have almost the same shape. As R increases, however, there is a marked 
departure from this symmetry. When R = 200 we see that u is positive for 
y < 0.38, where both centrifugal force and pressure gradient are active. In  this 
region the exponential term in (38) is of the same order of magnitude as the first 
term and the profile is of the boundary-layer type. For y > 0.38 it  is seen from 
figure 1 that the centrifugal force is vanishingly small, and the flow near the 
stationary disk behaves essentially like Poiseuille flow with the pressure gradient 

It is important to note here that a solution for the steady radial-axial flow has 
been obtainable in which inertia terms are neglected, and yet all the boundary 
conditions are satisfied. Such a solution could not be found in the single-disk 
problem (Rosenblat 1959). An examination of the behaviour at  high Reynolds 
numbers throws light on the contrasting features of the two problems. 

(39). 
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In  both cases centrifugal force, acting within a boundary layer of thickness 
,/(v/n), causes fluid to be thrown radially outwards. As compensation, fluid is 
drawn inwards along the axis towards the moving disk. In  the single-disk case, 
the quantity of fluid required for this purpose can be obtained in a purely axial 
motion from, in effect, a source at  infinity whose strength is determined by 
continuity considerations. Hence no radial flow takes place at  large z, and there 

FIamtE 2. One disk oscillating: typical streamlines of steady radia1-axial flow 
for R = 5, 50, 200. 

- 0 4  0 004 0.08 012 
f 

FIGURE 3. One disk oscillating: steady radial velocity f’ = 
for R = 5 ,  50, 200. 

is no radial pressure gradient. When a second disk is present, however, the 
condition w = 0 on z = d has to be satisfied. Consequently the fluid thrown 
radially outwards near the oscillating disk must be balanced by fluid sucked 
radially inwards. To maintain this inward flow, a radial pressure gradient is 
induced. 

Again in the single-disk problem the centrifugal force is zero outside the 
boundary layer. The hitherto-neglected inertia terms become comparable in 
magnitude with the viscous term and hence important. The result is the formation 
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of a second boundary layer within which the steady radial flow takes place. In  
the present problem, on the other hand, although outside the boundary layer the 
non-linear inertia terms are again large compared with the vanishingly small 
centrifugal force, they are still negligible in relation to the radial pressure gradient 
which now dominates (in general, see later). Hence the boundary conditions are 
satisfied and there is no second layer formed. 

Fluctuating radial-axial flow 

Equation (29) yields the time-dependent component of the radial-axial flow. For 
low Reynolds numbers the solution is found to be 

1 iR 
1 - Y ) ~  (3- y)-- (29+ 167y- 150y2+ 30y3) +O(R3), 

R 
120 [ 120 

h = - - y (  

R 
120 h’ = -y(l-y) 

(6- 15y+5y2)---(58+385~-143y2+105@j3-210y4)] iR +O(R3) (41) 
120 

+ O(R2). (42) 
3 109iR 

I -  20 4200 
K and 

For high R we obtain 

8i(2 - J(2iR)) h’ - 2 - J2 - 2(2 - J(2iR)) e-2q(iR)” - ( 2  J(2iR) - 2 - 4 2 )  e--.\/(2iR)V 

and 

The principal feature of this component of the flow is that at  high Reynolds 
numbers a boundary layer forms near the stationary disk as well as near the 
rotating disk-in contrast to the steady component. This arises from the last 
term in equation (44). When y is nearly 1, (44) reduces to 

a typical boundary-layer profile, which is very similar to the solution for flow in 
a pipe under a periodic pressure gradient (Schlichting 1955, p. 199). In both cases 
the formation of a boundary layer is due to the fact that the vorticity diffusing 
away from the wall is constantly changing in sign. 

Outside the two layers the velocity-given then by the first term of (44)-is 
independent of y, since only the constant pressure gradient is there active. 

Remarks 

Finally, we examine the permissibility of neglecting the inertia. terms of 
equations (7)  and (8), with particular reference to flow at high Reynolds numbers. 
From(38) and (39)itisseenthatforlargeR,f‘ = O(l)a,ndK, = O(l/R).Therefore 
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the term ( R/n)2 f l 2  which occurs in equation ( 7 )  would appear to be small com- 
pared with the linear terms if 

(R/n)2 < 1/R. 

Since l/,/R = ( l /d)  J(v/n) ,  and R/n is the amplitude of the disk's oscillations, 
we can say that equation (28) for f and f '  is a valid approximation provided that 

boundary-layer thickness 
distance between disks ' amplitude of oscillations 4 

n 

An alternative way of expressing this condition is as follows. Since by equa- 
tion (6) the steady radial component is us = (rLP/n) f ', the rate of convection by 
the radial flow through a typical distance r is W/n.  Also the rate a t  which vorticity 
diffuses through a distance d is v/d2.  Hence (46) is equivalent to 

rate of convection by us < rate of diffusion through distance d, } (47) 
i.e. a 2 / n  < v/d2.  

The right-hand side of (47) represents the influence of the second disk. If this is 
absent, d -+ co, v/d2 -+ 0 so that convection is always significant-analogous to 
the result obtained in the single-disk problem. In  the present case inertia need be 
included only if (46) or (47) is not satisfied. We would then have to solve a compli- 
cated non-linear equation very similar to that encountered by Batchelor (1951) 
and Stewartson (1953) for the steadily rotating disks. 

These difficulties arise only for the steady radial-axial component of velocity. 
For it is quickly seen that linearization of the equations determining the trans- 
verse and fluctuating radial components does not require such a stringent condi- 
tion. In  these cases it is in fact only necessary that the amplitude a/n be small 
compared with unity. 

3. Both disks oscillating 
We now consider the case where the two disks are oscillating with the same 

frequency and angular speed but 180" out of phase. This is analogous to the 
problem, studied by Stewartson, of disks rotating steadily with the same speeds 
in opposite directions. As in that problem we anticipate that the results will be 
symmetrical (or anti-symmetrical) about the plane y = 4. 

The boundary conditions (5) are replaced by 

(5a) 1 u = w = 0,  v = rReinl on z = 0,  

u = w = O ,  v =  -rQeint on z = d .  

Equations (1)-(4) may again be transformed using (6) and for the transverse flow 
lead to 

- _  d2g iRg = 0, 
dY2 

as previously, but with g(0) = 1 and g (  1) = - 1. The solution now is 

sinh,/(iR)(l-y)-sinhJ(iR) y 
sinh , / ( iR) g =  
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For small Reynolds numbers this yields a velocity profile 

Hence the amplitude is given by 

1 R2 [ 360 
14 = (1-29) l--y(l-y)(1-2y+2y2) - 
rQ 

and the phase lag is 
The skin friction is given by 

tan-l +Ry( 1 - y). (lga) 

These approximations are found to be valid for about R < 40. The amplitude 
profile for R = 20, illustrated in figure 4, is antisymmetrical about the plane 

I v l l m  
FIGURE 4. Two disks oscillating: amplitude of transverse velocity Ivl/rQ 

for R = 20, 200, 800. 

y = 4 in which there is zero transverse flow. The shearing forces on the two disks 
are equal in magnitude, though they will be opposite in sign. 

The asymptotic solution, usefulfor R > 80, is 

and this leads to 

pr R 
d 

J(4R) (cosnt-sinnt). (22,23a) 

Figure 4 shows also the velocity amplitude for R = 800,800 derived from (17 a). 
It is seen that a boundary layer of thickness z - J(v/n) forms adjacent to both of 
the disks. The expression for the skin friction is identical with (22), when one disk 
is stationary. 

For the radial-axial flow equation (24) again holds, with the same boundary 
conditions. Neglect of the inertia terms is allowable here also provided the 



398 S. Rosenblat 

condition (46 )  is satisfied. The substitutions (26 )  and (27 )  yield two equations 
analogous to (28 )  and (29) ,  with a difference in the last term in each owing to the 
changed value of (g eiT)2. 

After some tedious algebra we obtain the following results for the mean steady 
component of the flow. For small R, 

R 
30 

f’ = -9(1- Y) ( 1  - 5 ~ +  5y2)  

and .KO = &+O(R2).  

1.0 - 

I \ \  (R=20 

0 1 2 3 4 
, 

0 1 2 3 4 

FIGURE 5. Two disks oscillating: typical streamlines 
of steady radial-axial flow for R = 20, 200, 800. 

FIGURE 6. Two disks oscillating: 
steady radial velocity f 
for R = 20, 200, 800. 

For large Reynolds numbers, 
1 (1 - By) (1  + 2y - 2y2) + ~ [e-dW)V - e - d ( 2 R ) ( l ~ ) ] ,  

1 

4 &w 
( 3 7 a )  

and 

Figure 5 depicts representative streamlines of this flow at R = 20,200,800.  As 
might be expected there is symmetry about the plane y = 4 and no axial flow 
across it. I n  this sense this plane acts as an interface separating the fluid into two 
self-contained portions, in each of which there is axial flow towards the moving 
disk. The pressure gradient at  high R given by ( 3 9 a )  is twice that of 5 2 ,  as it has to 
counterbalance the flow in two boundary layers. In  both cases, however, this 
pressure gradient is quite small at  large Reynolds numbers, which corresponds to 
a result obtained by Stewartson. 

In  figure 6 we see the radial velocity component at each of the three values of 
the Reynolds number. In  all cases f’ is a minimum (i.e. maximum inflow) when 
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y = 9. For R = 20 it is zero on planes y = 0.37 and 0.73. Between these and the 
walls there is radial outflow, due to the predominance of centrifugal action. For 
0.27 < y < 0.73 there is an inflow as the pressure gradient is then the main factor. 

At high Reynolds numbers the profile has the character of a boundary layer 
near both disks, for about y < 0.2 and y > 0.8. In  the main body of the fluid its 
shape is described by a quadratic in y ,  which is well known as the behaviour of 
a fluid under constant pressure gradient. 
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